Errata zum Buch: Theo de Jong: Lineare Algebra

Pearson 2013, ISBN 978-3-86894-113-5 Stand: 2. März 2015

Für Hinweise auf weitere Fehler bin ich sehr dankbar.

 $\hbox{E-Mail: dejong@mathematik.uni-mainz.de}\\$

Seite, Zeile	falsch	richtig
22, 1 v.u.	$ \begin{pmatrix} 1 \cdot 5 + 2 \cdot 7 & 3 \cdot 5 + 4 \cdot 7 \\ 1 \cdot 6 + 2 \cdot 8 & 3 \cdot 6 + 4 \cdot 8 \end{pmatrix} = \begin{pmatrix} 19 & 43 \\ 22 & 50 \end{pmatrix} $	$ \left(\begin{array}{ccc} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{array} \right) = \left(\begin{array}{cc} 19 & 22 \\ 43 & 50 \end{array} \right) $
24, 2 v.o.	$\lambda \cdot A$	$\lambda \cdot A = \lambda \cdot$
24, 3.v.o	gilt $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix}$.	und $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix}$ gilt $A \cdot A^{-1} = A^{-1} \cdot A = \text{Id}$.
25, 5 v.u.	Sei	Sei $A =$
32, 4 v.u.	$R_{ct+su,cu-st}$	$R_{ct+su,st-cu}$
32, 4, v.u.	= cu - st.	= st - cu.
45, 3 v.o	$c = B^{-1}(x)$	$x = B^{-1}(c)$
47, 10. v.o.	projiezieren	projizieren
47, 9 v. u.	projieziert	projiziert
50, 4 v.u.	Sei z.B. $a_1b_2 - a_1b_2 \neq 0$.	Sei z.B. $a_1b_2 - a_2b_1 \neq 0$.
58, 3 v.o.	$t \cdot a$	$\mathbb{R} \cdot a$
61, 4 v.o	$\begin{array}{l} (b_{21}a_1 + b_{22}a_3 + b_{23}a_3) \times \\ (b_{31}a_1 + b_{32}a_3 + b_{33}a_3) \end{array}$	$(b_{12}a_1 + b_{22}a_3 + b_{32}a_3) \times (b_{13}a_1 + b_{23}a_3 + b_{33}a_3)$
64	Es gibt einige Fehler in der Definition von A^{ad} . Die richtige Matrix steht am Ende der Errata liste.	
69, 9 v.o	$v \in \mathbb{R}$	$v \in \mathbb{R}^3$
75, 10 v.u.	Körper neun	Körper mit neun
79, 16, v.o.	$(\sqrt{3}+1)^6$	$(\sqrt{3}+i)^6$
80, 10 v.o.	$c + d \cdot i, \ge 0$	$c + d \cdot i, \ d \ge 0$
87, 13 v.o.	$f = x^2 + 3x + 4$	$f = x^2 + 3x + 5$
87, 8 v.u.	\mathbb{F}_p	$\mathbb{F}_p \setminus \{0\}$
95, 10 v.0.	$f(a) \neq 0$	f(a) = 0

Seite, Zeile	falsch	richtig
104	Nummerierung in Satz 4.3 stimmt nicht.	
114, 13 v.u.	Q_{ij}^{-1}	$Q_{ij}(\lambda)^{-1}$
114, 12 v.u.	$S_i(\lambda)^{-1}$	$S_i(\lambda)^{-1}$
124,5 v.o.	$\det(A) := \det(A) :=$	$\det(A) :=$
124, 8 v. o.	$\sum_{1 \leq i < j < n}$	$\sum_{1 \leq i < j \leq n}$
128, 11 v.o.	$\sum_{k=1}^{n} (-1)^{i+k}$	$\sum_{k=1}^{n} (-1)^{j+k}$
131, 6 v.u.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
132, 12 v.u	$\det \left(a_{1\sigma(1)},\ldots\right)$	$\det \left(a_{1,\sigma(1)},\dots\right.$
140, 1 v.u.	form enhat	formen hat
143, 13 v.u.	reele	reelle
144, 12 v.o.	$\dim(U)$	U
144, 13 v.o.	$\dim(V)$	V
146, 21 v.u	x_1v_{k-1}	$x_{k-1}v_{k-1}$
148, 4 u. 6 v.u.	$\frac{x_1 v_{k-1}}{\lambda_j^{(i)}}$	$x_{k-1}v_{k-1}$ $\mu_j^{(i)}$
150, 5 v.o.	$M_{a,v}(x)$	$M_{A,v}(x)$
152	Aufgabe 6.22 gehört im Abschnitt 6.7	
150, 5 v.u.	$-a_{n-1}$	$-a_{k-1}$
154, 6 v.o.	(QP)(A)(v) = 0,	(QP)(A)(w) = 0,
154, 9 v.o.	Deshalb gilt	Deshalb ist $\dim(\operatorname{Ker}(P(A)))$ + $\dim(\operatorname{Ker}(Q(A)))$ $\leq \dim(V)$ und es folgt:
154. 11 v.u	Ist λ ist ein Eigenwert von A , so $M_{A,v}(x) = (x - \lambda)$ for ein v .	Ist λ ein Eigenwert von A , so ist $M_{A,v}(x) = (x - \lambda)$ für ein $v \in V$.
154, 9 v.u.	for	für
154, 6 v.u.	verschiedene	verschiedenen
163, 12 v.o.	abstandsbewahrenden	abstandsbewahrenden bijektiven
166, 5 v.o	$\langle \lambda v, w angle$	$\lambda \cdot \langle v, w angle$
168, 16 v.o.	Orthonormalsystem zu	Orthonormalsystem von U zu
168, 6 v. u.	Sei $x \in U$.	Sei $x \in V$.
170, 13 v.u	$\tilde{b}_k = b_k - \sum_{i=1}^k \langle b_k, e_i \rangle b_i$	$\tilde{b}_{k+1} = b_{k+1} - \sum_{i=1}^{k} \langle b_{k+1}, e_i \rangle e_i$
172, 9 v.u.	$ A(v-w) ^2 = A(v) - A(w) ^2$	$ A(v) - A(w) ^2 = A(v - w) ^2$
174, 5 v.o.	$b+U_1$	$b+U_2$
174, 8 v.u	für $j > k$	für $i > k$
174, 3 v.u.	behält	erhält
176, 2 v.o	$(\langle a_i, a_j) \rangle)$	$(\langle a_i, a_j \rangle)$
176, 11 v.o.	$x^t A y$	$x^T A y$

Seite, Zeile	falsch	richtig
180, 9 v.u.	Kapitel 2	Kapitel 1
182, 5 v.o	$\langle \lambda v, w \rangle$	$\lambda \cdot \langle v, w \rangle$
182, 6 v.o.	reeller	komplexer
182, 9 v.u.	Eine hermitesche Matrix A definiert durch $\langle x, y \rangle := x^T A y$ ist	Für eine hermitesche Matrix A ist $\langle x, y \rangle := x^T A y$
182, 1 v.o.	hermetisch	hermitesch
184, 13 v.o	$\langle B^*(x), B^*(x) = 0 \rangle$	$\langle B^*(x), B^*(x) \rangle = 0$
186, 3 v.o	$(\sigma x, y)$	$\sigma(x,y)$
186, 2 v.u.	$W^{\perp} =$	$W^{\perp} :=$
188, Aufgabe 7.70	Entferne Teil 2.	
190, 2 und 10 v.o	Hyperebene	Hyperfläche
190, 12 u. 14 v.u.	S(H)	$S^T(H)$
190, 11 v.u.	$y_i = x_i + b_i/a_i$	$y_i = x_i - b_i/a_i$
190, 5 v.u.	TVS(H)	$TVS^T(H)$
190, 4 v.u.	x_{k+1}	$x_{k+1}+$
193, 5 v.o.	$a^2x^2 - b^2y^2 = 1$	$a^2x^2 + b^2y^2 = 1$
206, 5 v.u.	Grundschule	6. Klasse
208, 5 v.u.	Untergruppe von H	Untergruppe von G
214, 8 v.o.	diese Streichen	dieses streichen
216 6 v.o.	d.h.,	d.h.

Nachfolgend steht als Erstes die falsche Matrix $A^{\rm ad}$ wie auf Seite 64 des Buches, darunter die richtige. Die fehlerhaften Einträge sind rot markiert.

$$A^{\text{ad}} := \left(\begin{array}{cccc} a_{22}a_{33} - a_{32}a_{23} & a_{32}a_{13} - a_{33}a_{12} & a_{12}a_{23} - a_{22}a_{13} \\ a_{31}a_{23} - a_{21}a_{33} & a_{11}a_{33} - a_{31}a_{13} & a_{23}a_{11} - a_{21}a_{13} \\ a_{21}a_{33} - a_{32}a_{23} & a_{21}a_{13} - a_{23}a_{11} & a_{11}a_{22} - a_{21}a_{12} \end{array} \right)$$

$$A^{\text{ad}} := \left(\begin{array}{cccc} a_{22}a_{33} - a_{32}a_{23} & a_{32}a_{13} - a_{33}a_{12} & a_{12}a_{23} - a_{22}a_{13} \\ a_{31}a_{23} - a_{21}a_{33} & a_{11}a_{33} - a_{31}a_{13} & a_{21}a_{13} - a_{11}a_{23} \\ a_{21}a_{32} - a_{31}a_{22} & a_{31}a_{12} - a_{11}a_{32} & a_{11}a_{22} - a_{21}a_{12} \end{array} \right)$$

Besser gewesen wäre es, ich haette A^{ad} folgender Massen erklärt: Ist A die Matrix mit **Zeilenvektoren** a,b,c, so ist A^{ad} die Matrix mit **Spaltenvektoren** $b\times c,c\times a$

und $a \times b$. Also

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \text{ und } A^{\text{ad}} := \begin{pmatrix} b_2c_3 - b_3c_2 & c_2a_3 - c_3a_2 & a_2b_3 - a_3b_2 \\ b_3c_1 - b_1c_3 & c_3a_1 - c_1a_3 & a_3b_1 - a_1b_3 \\ b_1c_2 - b_2c_1 & c_1a_2 - c_2a_1 & a_1b_2 - a_2b_1 \end{pmatrix}$$